RTCA Special Committee 186, Working Group 3

ADS-B 1090 MOPS, Revision A

Meeting #4

ACTION ITEM 3-10

Appendix Material for 1090 TIS Broadcast

Presented by Vincent Orlando

SUMMARY

Formats for TIS-B on 1090 MHz have been reviewed at previous WG-3 meetings. This working paper proposes material for a new section of Appendix A on TIS-B based upon the approach agreed at the previous meetings. As agreed during Meeting #4, during the presentation of this paper, this newly proposed text will become subparagraph A.2 with all previous Appendix A text in DO-260 becoming A.1.n.n.n.n

1090-WP-4-08A Page 1 of 15

1.0 Introduction

At the Phoenix meeting, the Working Group agreed to begin the documentation of TIS-B by assigning an action item to propose appendix material for this service. The intended approach was to add this material to Appendix A. However, on closer examination, it became evident that the TIS-B material should reside in its own appendix.

Because the fine TIS-B messages are closely related to the ADS-B messages, the TIS-B appendix will have numerous references to Appendix A. For this reason, it is desirable that the TIS-B appendix is physically close to Appendix A to make it easier to follow these references. To accomplish this purpose without renaming any existing appendices, it is proposed that the TIS-B appendix be labeled "A-1."

[During the presentation of this paper during Meeting #4, it was agreed that the approach would be to insert this proposed text into the existing Appendix A, but to renumber the DO-260 Appendix A text with a new subsection one (1) in front of all existing section numbers and to make this proposed TIS-B text begin with A.2. All references in DO-260 to any Appendix A subparagraphs would then be modified to insert a one (1) in front of all of the existing subparagraph section heading numbers.]

2.0 Proposed Initial Draft of Appendix A-1

A proposed initial draft for the TIS-B Appendix A.2 is contained in the following pages.

A change is also required to paragraphs A.7.3 and A.7.5 to accommodate the 12-bit CPR encoding for TIS-B. A proposed change for these paragraphs is included in Working Paper 1090-WP-4-09.

[In view of the agreement reached to number the new TIS-B text beginning with A.2, the above paragraph would be revised to read:] A change is also required to paragraphs A.1.7.3 and A.1.7.5 to accommodate the 12-bit CPR encoding for TIS-B. A proposed change for these paragraphs is included in Working Paper 1090-WP-4-09.

Proposed Text for new section Appendix A.2

Traffic Information Service Broadcast (TIS-B)

Formats and Coding Definitions

1090-WP-4-08A Page 2 of 15

A.2 Traffic Information Service – Broadcast (TIS-B) Formats and Coding

A.2.1 Introduction

Notes:

- 1. This section of Appendix A defines the formats and coding for a Traffic Information Service Broadcast (TIS-B) based on the same 112-bit 1090 MHz signal transmission that is used for ADS-B on 1090 MHz.
- 2. TIS-B complements the operation of ADS-B by providing ground-to-air broadcast of surveillance data on aircraft that are not equipped for 1090 MHz ADS-B. The basis for this ground surveillance data may be an ATC Mode S radar or a surface or approach multilateration system. The TIS-B ground-to-air transmissions use the same signal formats as 1090 MHz ADS-B and can therefore be accepted by a 1090 MHz ADS-B receiver.
- 3. TIS-B service is the means for providing a complete surveillance picture to 1090 MHz ADS-B users during a transition period. After transition, it also provides a means to cope with a user that has lost its 1090 MHz ADS-B capability.

A.2.2 TIS-B Format Definition

TIS-B information is broadcast using the 112-bit Mode S DF=18 format as shown below in Figure A-13:

Figure A-13: TIS-B Format Definition

10 01 0 CF:3 AA:2	ME:56	Pl: 2 4
-------------------	-------	---------

A.2.3 Control Field Allocation

The content of the DF=18 transmission is defined by the value of the control field, as specified in Table A-21.

1090-WP-4-08A Page 3 of 15

Table A-21: "CF" Field Code Definitions in DF=18 ADS-B and TIS-B Messages.

CF	"ATCRBS	Meaning
Value	or	
	Mode S"	
	Flag	
0	N/A	ADS-B message from a non-transponder device,
		AA field holds 24-bit ICAO aircraft address
1	N/A	Reserved for ADS-B message in which the AA field holds
		anonymous address or ground vehicle address or fixed
		obstruction address
2	0	Fine TIS-B message,
		AA field contains the 24-bit ICAO aircraft address
	1	Fine TIS-B message,
		AA field contains the 12-bit Mode A code followed by a 12-
		bit track file number
3	0	Coarse TIS-B airborne position and velocity message,
		AA field contains the 24-bit ICAO aircraft address
	1	Coarse TIS-B airborne position and velocity message,
		AA field contains the 12-bit Mode A code followed by a 12-
		bit track file number.
4	N/A	Reserved for TIS-B management message
		AA field holds TIS-B service volume ID + other information
		(e.g., MSB of reference position for the service volume)
5 - 7	N/A	Reserved for other uses (e.g., for FIS-B messages)

A.2.4 TIS-B Surveillance Message Definition

A.2.4.1 TIS-B Fine Airborne Position Message

The TIS-B fine airborne position ME field shall be formatted as specified in Figure A-15.

Note: Additional details are specified in the following paragraphs.

A.2.4.1.1 ATCRBS/Mode S Flag (AMS)

This one-bit field (Bit #8) shall indicate the type of surveillance data reported in the TIS-B message. AMS equal to ZERO shall indicate that the TIS-B data pertains to a Mode S aircraft. AMS equal to ONE shall indicate that the TIS-B data pertains to an ATCRBS aircraft

<u>Note</u>: The AA field is coded differently for Mode S and ATCRBS aircraft as specified in Table A-21.

1090-WP-4-08A Page 4 of 15

A.2.4.1.2 Pressure Altitude

This 12-bit field shall provide the aircraft pressure altitude. This field shall contain barometric altitude encoded in 25 or 100 foot increments (as indicated by the Q Bit).

A.2.4.1.3 CPR Format (F)

This field shall be set as specified in A.1.4.2.1

A.2.4.1.4 Latitude/Longitude

The latitude/longitude fields in the TIS-B fine airborne position message shall be set as specified in A.1.4.2.3.

A.2.4.2 TIS-B Surface Position Message

The TIS-B surface position ME field shall be formatted as specified in Figure A-15

Note: Additional details are specified in the following paragraphs.

A.2.4.2.1 Movement

This field shall be set as specified in A.1.4.3.1

A.2.4.2.1.1 Ground Track (true)

A.2.4.2.1.1.1 Ground Track Status

This field shall be set as specified in A.1.4.3.2.1.

A.2.4.2.1.1.2 Ground Track Angle

This field shall be set as specified in A.1.4.3.2.2.

A.2.4.2.1.2 ATCRBS/Mode S Flag (AMS)

This one-bit field (Bit #21) shall indicate the type of surveillance data reported in the TIS-B message. AMS equal to ZERO shall indicate that the TIS-B data pertains to a Mode S aircraft. AMS equal to ONE shall indicate that the TIS-B data pertains to an ATCRBS aircraft

<u>Note</u>: The AA field is coded differently for Mode S and ATCRBS aircraft as specified in Table A-21.

A.2.4.2.1.3 Compact Position Reporting (CPR) Format (F)

This field shall be set as specified in A.1.4.3.3.

1090-WP-4-08A Page 5 of 15

A.2.4.2.1.4 Latitude/Longitude

The latitude/longitude fields in the TIS-B fine surface position message shall be set as specified in A.1.4.3.5.

A.2.4.3 Identification and Category Message

The TIS-B identification and category ME field shall be formatted as specified in Figure A-17. It shall only be used for Mode S aircraft.

Note: Additional details are specified in the following paragraphs.

A.2.4.3.1 Aircraft Identification Coding

This field shall be set as specified in A.1.4.4.1.

A.2.4.4 Airborne Velocity Message

The TIS-B airborne velocity ME field shall be formatted as specified in the Figure A-17.

Note: Additional details are specified in the following paragraphs.

A.2.4.4.1 Subtype Field

Only subtypes 1 and 2 shall be used for the TIS-B airborne velocity message. Subtype 1 shall be used for velocities under 1000 knots and subtype 2 shall be used for aircraft capable of supersonic flight when the velocity might exceed 1022 knots.

The supersonic version of the velocity coding shall be used if either the east-west OR north-south velocities exceed 1022 kt. A switch to the normal velocity coding shall be made if both the east-west AND north-south velocities drop below 1000 kt.

A.2.4.4.2 ATCRBS/Mode S Flag (AMS) (Bit 9)

A.2.4.4.3 Magnetic Heading in Airborne Velocity Messages

A.2.4.4.3.1 Magnetic Heading Status

This field shall be set as specified in A.1.4.5.5.1

A.2.4.4.3.2 Magnetic Heading Value

This field shall be set as specified in A.1.5.5.1

A.2.4.5 Coarse Airborne Position Message

The TIS-B coarse airborne position ME field shall be formatted as specified in the Figure A-18.

1090-WP-4-08A Page 6 of 15

Notes:

- 1. This message is used if the surveillance source for TIS-B is not of high enough quality to justify the use of the fine formats. An example of such a source is a scanning beam Mode S interrogator.
- 2. Additional details are specified in the following paragraphs.

A.2.4.5.1 ATCRBS/Mode S Flag (AMS)

This one-bit field (Bit #1) shall indicate the type of surveillance data reported in the TIS-B message. AMS equal to ZERO shall indicate that the TIS-B data pertains to a Mode S aircraft. AMS equal to ONE shall indicate that the TIS-B data pertains to an ATCRBS aircraft

<u>Note</u>: The AA field is coded differently for Mode S and ATCRBS aircraft as specified in Table A-21.

A.2.4.5.2 Service Volume ID (SVID)

The 4-bit SVID field shall identify the TIS-B site that delivered the surveillance data.

<u>Note</u>: In the case where TIS-B messages are being received from more than one TIS-B ground stations, the SVID can be used to select coarse messages from a single source. This will prevent the TIS-B track from wandering due to the different error biases associated with different sources.

A.2.4.5.3 Pressure Altitude

This 12-bit field shall provide the aircraft pressure altitude. This field shall contain barometric altitude encoded in 25 or 100-foot increments (as indicated by the Q Bit).

A.2.4.5.4 Latitude/Longitude

The latitude/longitude fields in the TIS-B coarse airborne position message shall be set as specified in A.1.4.2.3, except that the 12-bit form of CPR coding as specified in <u>A.TBD</u> shall be used.

A.2.5 TIS-B Management Messages

<u>Note</u>: TIS-B management messages announce the location and the service volume of the TIS-B ground station. This information aids in the selection of a ground site by an airborne TIS-B user. The management message is also used as a "keep alive" indication to alert a user when service becomes unavailable.

1090-WP-4-08A Page 7 of 15

A.2.5.1 TIS-B Management Message Content

<u>TBD</u>

1090-WP-4-08A Page 8 of 15

Figure A-14: TIS-B Fine Airborne Position Message

·	
1	
2	FORMAT TYPE CODE
4	(See A.1.4.1 and Note 1)
5	
6	SURVEILLANCE STATUS
7	LSB
8 9	ATCRBS/Mode S Flag (AMS)
10	
11	PRESSURE ALTITUDE
12	
13 14	The altitude code (AC) as specified
15	in section 2.2.13.1.2 of DO-181B but
16	with the M-bit removed
17	
18	
19 20	
21	Reserved
22	CPR FORMAT (F) (See A.1.4.2.1)
23	MSB
24	
25 26	
27	
28	
29	
30	CPR ENCODED LATITUDE
31 32	(CPR Airborne Format
33	See A.1.7.1 to A.1.7.5)
34	,
35	
36	
37 38	
39	LSB
40	MSB
41	
42 43	
44	
45	
46	CDD ENCODED I ONOTTUDE
47 48	CPR ENCODED LONGITUDE
49	(CPR Airborne Format
50	See A.1.7.1 to A.1.7.4)
51	·
52	
53 54	
55	
56	LSB
	·

Purpose: To provide airborne position information for aircraft that are not equipped with 1090 MHz ADS-B when the TIS-B service is based on high quality surveillance data.

Surveillance Status coding

0 =no condition information

- 1 = permanent alert (emergency condition)
- 2 = temporary alert (change in Mode A identity code other than emergency condition)
- 3 = SPI condition

Codes 1 and 2 take precedence over code 3.

1090-WP-4-08A Page 9 of 15

Figure A-15: TIS-B Fine Surface Position Message

1	
2 3	FORMAT TYPE CODE
4 5	(See A.1.4.1)
6 7	
8	MOVEMENT
10	(See A.1.4.3.1)
11 12	
13 14	STATUS for Gnd Tk (1 =valid, 0 = not valid) MSB
15	
16 17	GROUND TRACK (7 bits) (See A.1.4.3.2)
18 19	Resolution = 360/128 deg
20 21	LSB ATCRBS/Mode S Flag (AMS)
22	CPR FORMAT (F) (See A.1.4.2.1)
23 24	MSB
25	
26 27	
28 29	
30	CPR ENCODED LATITUDE
31 32	(CPR Surface Format
33	See A.1.7.1 to A.1.7.4 and A.1.7.6)
34 35	
36 37	
38	LCD
39 40	LSB MSB
41 42	
43	
44 45	
46 47	CPR ENCODED LONGITUDE
48	
49 50	(CPR Surface Format See A.1.7.1 to A.1.7.4)
51 52	,
53	
54 55	
56	LSB

Purpose: To provide surface position information for aircraft which are not equipped with 1090 MHz ADS-B.

1090-WP-4-08A Page 10 of 15

Figure A-16: TIS-B Identification and Category Message

1 2 3 4 5	FORMAT TYPE CODE (See A.1.4.1)
6 7 8	EMITTER CATEGORY
9 10 11 12 13	MSB CHARACTER 1
14 15 16	MSB CHARACTER 2
18 19 20	CHARACTER 2 LSB MSB
21 22 23 24	CHARACTER 3
25 26 27 28	LSB MSB
29 30 31 32	CHARACTER 4
33 34 35 36 37	MSB CHARACTER 5
38 39 40	LSB MSB
41 42 43 44	CHARACTER 6
45 46 47 48	MSB CHARACTER 7
49 50 51 52	LSB MSB
52 53 54 55	CHARACTER 8
56	LSB

Purpose: To provide aircraft identification and category for aircraft that are not equipped with 1090 MHz ADS-B.

Type coding:

1 = Aircraft identification, category set D 2 = Aircraft identification, category set C = Aircraft identification, category set B 4 = Aircraft identification, category set A

ADS-B Emitter Category coding:

No ADS-B Emitter Category Information

Light (< 15 500 lbs.)

Small (15 500 to 75 000 lbs.) Large (75 000 to 300 000 lbs.)

High Vortex Large (aircraft such as B-757)

Heavy (> 300 000 lbs.) 5

High Performance (> 5 g acceleration and

> 400kts)

Rotorcraft

Set B

No ADS-B Emitter Category Information

Glider/sailplane Lighter-than-Air 3 Parachutist/Skydiver

4 Ultralight/hang-glider/paraglider

5 Reserved

Unmanned Aerial Vehicle 6

Space/Trans-atmospheric Vehicle

Set C

No ADS-B Emitter Category Information 0 Surface Vehicle – Emergency Vehicle 1 = Surface Vehicle – Service Vehicle 3 = Fixed Ground or Tethered Obstruction

4-7 Reserved

Set D: Reserved

Aircraft identification coding:

Coding as specified for A.1.4.4

1090-WP-4-08A Page 11 of 15

<u>Figure A-17:</u> TIS-B Airborne Velocity Messages (Subtypes 1 and 2: Velocity Over Ground)

BDS 0,9 1	
2 3 FORMAT TYPE CODE = 19 4 5 LSB 1 6 SUBTYPE 1 0 SUBTYPE 2 0 7 0 1 8 1 0 9 ATCRBS/Mode S Flag (AMS) Reserved 11 12 13 14 DIRECTION BIT for E-W velocity (0=East, 1=West) 15 EAST-WEST VELOCITY (10 bits) NORMAL: LSB = 1 knot SUPERSONIC: LSB = 4 17 All zeros = no velocity info Value Velocity Value Velocity	
3	
4 5 LSB	
5	
6 7 8 0 SUBTYPE 1 0 SUBTYPE 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
7 0 1 9 ATCRBS/Mode S Flag (AMS) 10 Reserved 11 12 13 DIRECTION BIT for E-W velocity (0=East, 1=West) 15 EAST-WEST VELOCITY (10 bits) 16 NORMAL: LSB = 1 knot SUPERSONIC: LSB = 4 17 All zeros = no velocity info All zeros = no velocity info 18 Value Velocity	
9	
10 Reserved 11 12 13 14 DIRECTION BIT for E-W velocity (0=East, 1=West) 15 EAST-WEST VELOCITY (10 bits) 16 NORMAL: LSB = 1 knot SUPERSONIC: LSB = 4 17 All zeros = no velocity info Value Velocity Velocit	
11	
12	
13	
14 DIRECTION BIT for E-W velocity (0=East, 1=West) 15 EAST-WEST VELOCITY (10 bits) 16 NORMAL : LSB = 1 knot SUPERSONIC : LSB = 4 17 All zeros = no velocity info All zeros = no velocity info 18 Value Velocity	
15 EAST-WEST VELOCITY (10 bits) 16 NORMAL : LSB = 1 knot SUPERSONIC : LSB = 4 17 All zeros = no velocity info All zeros = no velocity info 18 Value Velocity	
17 All zeros = no velocity info 18 Value Velocity Value Velocity Value Velocity	
18 <u>Value</u> <u>Velocity</u> <u>Value</u> <u>Velocit</u>	
	<u>γ</u>
19 1	
21 3 2 kt 3 8 kt	
22	
23 1022 1021 kt 1022 4084 k	
24 1023 >1021.5 kt 1023 > 4086	ĸt
25 DIRECTION BIT for N-S velocity (0=North, 1=South)	
26 NORTH-SOUTH VELOCITY (10 bits) 27 NORMAL: LSB = 1 knot SUPERSONIC: LSB = 4	lenata
28 All zeros = no velocity info All zeros = no velocity info	
29 Value Velocity Value Velocity	
30 1 0 kts 1 0 kt	_
31 2 1 kt 2 4 kt	
32 3 2 kt 3 8 kt	
33	.4
34 1022 1021 kt 1022 4084 k 35 1023 >1021.5 kt 1023 > 4086	
December 1	
36 Reserved 37 SIGN BIT FOR VERTICAL RATE: 0 = up, 1 = down	
38 VERTICAL RATE (9 bits)	
39 All zeros – no vertical rate information, LSB = 64 ft/min	
40 <u>Value</u> <u>Vertical rate</u>	
41 1 0 ft/min	
42 2 64 ft/min	
43 32576 ft/min	
45 511 32576 10111111 > 32608 ft/min	
46 Reserved	
47	
48	
49	
50	
51 52	
53	
54	
55	
56	

Purpose: To provide velocity information for aircraft that are not equipped with 1090 MHz ADS-B when the TIS-B service is based on high quality surveillance data.

Subtype Coding

Code	<u>Velocity</u>	<u>Type</u>
1	Ground speed	normal
2	_	supersonic

1090-WP-4-08A Page 12 of 15

Figure A-18: TIS-B Coarse Airborne Position Message

	1
1	ATCRBS/Mode S Flag (AMS)
2	SURVEILLANCE STATUS
3	1400
4	MSB SERVICE VOLUME ID (SVID)
5 6	SERVICE VOLUME ID (SVID)
7	LSB
8	MSB
9	mes
10	
11	
12	
13	PRESSURE ALTITUDE
14 15	
16	
17	
18	
19	LSB
20	GRND TRACK STATUS (1 = valid, 0 = invalid)
21	GROUND TRACK ANGLE MSB (180°)
22	(90°
00	(450)
23	(45°)
24 25	(22.5º) LSB (11.25º)
26	GROUND SPEED MSB (1024 knots)
27	(512 knots)
28	(256 knots)
29	(128 knots)
30	(64 knots)
31	LSB (32 knots)
32	CPR FORMAT (F) (0 = even, 1 = odd)
33 34	
34 35	
36	
37	
38	CPR-ENCODED LATITUDE
39	
40	
41	
42	
43 44	LSB
4 4 45	MSB
46	
47	
48	
49	
50	CPR-ENCODED LONGITUDE
51	
52 53	
53 54	
55	
56	LSB
	<u></u>

Purpose: To provide airborne position information for aircraft that are not equipped with 1090 MHz ADS-B when the TIS-B service is based on moderate quality surveillance data.

1090-WP-4-08A Page 13 of 15

Figure A-19: TIS-B Management

1	
2 3	
4	
5 6 7	
7 8	
9	
10 11	
12 13	
14 15	
16	
17 18 19 20 21	
19	
- 1	
22 23	
24	
25 26	
27 28	
29	
30 31 32	
33	
34 35	
36 37	
38	
39 40	
41	
42 43	
44 45	
45 46 47	Ì
48	ĺ
49 50	
51 52	Ì
53	Ì
54 55	Ì
56	

Purpose: To provide information about the location and the service volume boundaries of the TIS-B ground station

1090-WP-4-08A Page 14 of 15

This page is blank with many thanks to Bill Gates and the wonders of MS Word 2000

1090-WP-4-08A Page 15 of 15